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Lp-Spaces for UHF Algebras

Stanisøaw Goldstein1 and Viet Thu Phan1
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We construct L p-spaces for a UHF algebra A with a faithful product state w . We
show that the spaces obtained are isomorphic, as Banach spaces, to the Haagerup
spaces L p ( p w (A )9).

INTRODUCTION

The recent progress in the theory of noncommutative Dirichlet forms

(see, for example, Davies and Lindsay, 1992; Goldstein and Lindsay, 1995)

shows that L p-techniques can be applied fruitfully to the theory of quantum
dynamical semigroups. The use of properly defined noncommutative L p-

spaces also gives a very natural setting for hypercontractivity questions. We

present a simple attempt at a construction of noncommutative L p-spaces for

a class of C*-algebras. We consider a very simple situation, namely that of

a UHF algebra A with a faithful product state w . The reward is a very

satisfactory result connecting the spaces with the Haagerup spaces for the
von Neumann algebra generated by the image of A in the GNS representation

with respect to the state w . In many situations it will be possible to calculate

the L p-norms of A explicitly. The whole construction can be generalized

easily, but the main ideas remain the same. We can find them, in a slightly

different setting, in a recent paper of Majewski and Zegarlinski (1995).
Consult Terp (1981) for the Haagerup theory and Trunov (1979) for the

construction of L p-spaces for semifinite algebras.

1. THE HAAGERUP SPACES

Let ! be a von Neumann algebra acting in a Hilbert space H and c a

faithful normal semifinite weight on !. Denote by s c the modular auto-
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morphism group { s c
t }t P R for the pair (!, c ). The crossed product ! 5

! 3 | s c R is the von Neumann algebra acting on H 5 L 2 (R, H ) generated

by operators p (a), a P !, and l (s), s P R, defined by

( p (a) j )(t) 5 s c
2 t(a) j (t) for j P H, t P R

( l (s) j )(t) 5 j (t 2 s) for j P H, t P R

Let h be a positive self-adjoint operator on H such that l (t) 5 h it for t P
R, and let c be the dual weight on !. Put t ( ? ) 5 c (h 2 1 ? ). Then t is a faithful

(normal) semifinite trace on !. For any positive normal faithful functional

w on ! denote by h w the faithful self-adjoint operator on H such that r Å ( ? )
5 t (h w ? ). The map w j h w can be extended to a linear bijection of !

*
onto

a linear subspace of !
.

, where !
.

is the space of all measurable (with respect
to t ) operators affiliated with !. We denote this image of !

*
by L 1(!), and

endow it with a norm | ? |1 such that |h w |1 5 | w |. Now for p P [1, ` [, L p(!)

5 {k 5 u | k | : u P p (!), | k | p P L 1(!)} with |k|p 5 | | k | p|1/p
1 . For p 5 ` ,

L ` (!) 5 p (!), with | p (a)| ` 5 |a|. It turns out that L p(!) endowed with

the norms are Banach spaces sharing all the usual properties of classical L p

spaces such as the HoÈ lder inequality, duality properties, etc.

Lemma 1. Let @ be a von Neumann subalgebra of !. Assume that c | @
is semifinite and that s c | @

t 5 s c
t | @ for each t P R. Then @ can be canonically

embedded into ! and for each p P [1, ` ] the space L p(@) can be canonically

embedded into L p(!) so that for all k P L p(@), |k|@
p 5 |k|!

p .

Proof. Note that both @ and ! act on the same Hilbert space H and

that p @ 5 p ! | @, l @ 5 l !, h@ 5 h! and t @ 5 t ! | @. It follows from the

assumptions, by virtue of a theorem of Takesaki (1972), that there exists a
norm-one projection E from ! onto @. It is not hard to check, using the

definition of the dual weight, that for any w P @
*
,

w 5 ( w + E ) 2 | @

Thus h !
w + E 5 h @

w , and |h @
w | 5 | w |@ 5 | w + E|! 5 |h !

w + E|, which shows that

for any k P L 1(@) , L1(!), |k|@
p 5 |k|!

p . It is now obvious that, for each

p P [1, ` ], |k|@
p 5 |k|!

p for k P L p(@) , L p(!).

2. THE FINITE DISCRETE CASE

Let ! be a finite discrete factor, and t the faithful (normal) tracial state

on !. For each a P ! and p P [1, ` [, put

|a| t
p 5 t ( | a | p)1/p

For p 5 ` , put |a| t
` 5 |a|. It is easy to check that for each p P [1, ` ],
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| ? | t
p is a norm turning ! into a Banach space which we denote by L p(!, t ).

Moreover, the HoÈ lder inequality

|ab| t
r # |a| t

p|b| t
q

holds for all a, b P !, with p, q, r P [1, ` ] such that 1/p 1 1/q 5 1/r.
Finally, for each a P ! and p P [1, ` [,

|a| t
p 5 sup

|b|
t
q # 1

| t (ab) | where q P [1, ` ] is such that 1/p 1 1/q 5 1

Let now w be an arbitrary faithful (normal) state on !. There exists a
unique h P ! such that

w (a) 5 t (ha) for all a P !

Moreover, h is positive and invertible, and t (h) 5 1.
For all a P ! and p P [1, ` [, put

|a|p 5 t ( | h 1/2p ah1/2p | p)1/p

For p 5 ` , let |a| ` 5 |a|. We also define the bilinear form

^ a, b & 5 t (h 1/2ah1/2b) for all a, b P !

Lemma 1. For all p P [1, ` ] we have that:

(i) | ? |p is a norm on !
(ii) | ^ a,b & | # |a|p|b|q , where 1/p 1 1/q 5 1 and a, b P !.
(iii) |a|p 5 sup|b|q # 1 | ^ a, b & | for all a P !, where q P [1, ` ] is such

that 1/p 1 1/q 5 1.

Proof. (i) Note that |a|p 5 |h 1/2pah1/2p|r
p. If |a|p 5 0, then

h 1/2pah1/2p 5 0, so that a 5 0. Hence | ? |p is a norm.

(ii) We have, for all p P [1, ` ] and q P [1, ` ] such that 1/p 1 1/q 5 1,

| ^ a, b & | 5 | t (h 1/2ah1/2b) |

5 | t (h 1/2pah1/2p ? h1/2qbh1/2q) |

# |h 1/2pah1/2p ? h1/2qbh1/2q | t
1

# |h1/2pah1/2p| t
p|h

1/2qbh1/2q| t
q

5 |a|p|b|q

(iii) Note that h1/2p!h 1/2p 5 ! for each p P [1, ` ]. Thus,

|a|p 5 |h1/2pah1/2p| t
p

5 sup
|h

1/2q
bh

1/2q
|
t
p # 1

| t (h1/2pah1/2p ? h1/2qbh1/2q) |

5 sup
|b|q # 1

| ^ a, b & |
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Lemma 2. If p, s P [1, ` ] and p # s, then |a|p # |a|s for all a P !.

Proof. By the HoÈ lder inequality, if p # s , ` , then

|a|p 5 |h1/2pah1/2p| t
p

5 |h1/2r(h 1/2sah1/2s)h 1/2r| t
p

# |h1/2r| t
2r |h1/2sah1/2s| t

s |h1/2r| t
2r 5 |a|s

In the case s 5 ` ,

|a|p 5 sup
|b|q # 1

| ^ a, b & | # sup
|b|1 # 1

(|a| ? |b|1) # |a|

by the first part of the proof.

The norms | ? |p turn ! into a Banach space which we denote by L p(!,

w ). If w 5 t we are back to the old space L p(!, t ). In particular,

|a| t
p # |a| t

s for p, s P [1, ` ], p # s

It is also true that if w 1, w 2 are two faithful states on !, then L p(!, w 1) and
L p (!, w 2) are isomorphic (that is, isometric) Banach spaces (since both are

isomorphic to L p(!, t )).

Lemma 3. For each p P [1, ` ], the Banach space L p(!, w ) is isomorphic

to the Haagerup space L p (!).

Proof. We may assume that w 5 t and p , ` . Note that, since the

modular group { s t
t } acts trivially on !,

! : 5 ! 3 | s t R . ! ^ L ` (R)

Furthermore , the canonical trace t on the crossed product ! equals t J e 2 s

ds. The Haagerup space L p(!) consists of products a J exp(( ? )/p), where
a P !. Hence it is enough to show that the mapping

a j a ^ exp(( ? )/p)

is an isometry. It is clear that one needs only to consider the case p 5 1.

We must show that

t ( | a | ) 5 t ( x ]1, ` [( | a | ^ exp( ? )))

(see Terp (1981), Chapter II, Lemma 5). We calculate

t ( x ]1, ` [( | a | ^ exp( ? ))) 5 #
1 `

2 `

t ( x ]e
2 s, ` [( | a | ))e 2 s ds

5 #
`

0

t ( x ]s, ` [( | a | )) dt 5 t ( | a | )

which completes the proof.
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3. THE UHF ALGEBRAS

Let A be an UHF C*-algebra. We consider a fixed faithful product state

w on A. Thus, there exists a sequence (Bn), n 5 1, 2, . . ., of mutually
commuting finite discrete subfactors of A (each containing the unit of A )

such that ø `
n 5 1 Bn generate A as a C*-algebra, and that

w (b1b2 ? ? ? bn) 5 w (b1) w (b2) ? ? ? w (bn)

for all bj P Bj , j 5 1, 2, . . ., n. Let An denote the finite discrete subfactor

of A generated by ø n
j 5 1 Bj , and put A ` 5 ø `

k 5 1 An . For each n we denote

by w n the restriction of w to An and by | ? |(n)
p the norm of the Banach space

L p(An , w n). It is easy to check that for a P An , |a|(n)
p 5 |a|(n 1 k)

p for any positive

integer k. Hence we can introduce functionals | ? | p on A ` , by putting

|a|p 5 |a|(n)
p when a P An

Obviously, | ? |p turns A ` into a normed space. We denote by L p(A, w ) the

completion of A ` with respect to the norm. If a P An , there exists a sequence

(an) of elements of A ` converging to a in the norm of A. Hence, (an) is

Cauchy in the norm | ? |p for each p P [1, ` ]. Denote its limit in L p(A, w )

by i p(a). The map i p: A ® L p(A, w ) is an injection which extends the natural
embedding of A ` into this completion. Thus, for each p P [1, ` ], A can be

treated as a subspace of L p(A, w ).

Note that up to now it has not been made clear whether or not the spaces

L p(A, w ) depend (as Banach spaces) on the approximating sequence (An).

Let (H w , p w , j w ) be the GNS representation of the pair (A, w ). Let ! 5
p w (A )9 and !n 5 p w (An). Put v : 5 v j w and v n : 5 v j w | !n. We can treat v
as a state on !. By Kadison and Ringrose (1986), Theorem 13.1.13, v is

faithful on ! and the modular group { s v
t }t P R of ! leaves each !n invariant.

There is also a natural isometric isomorphism between the Banach spaces

L p(An , w n) and L p( p w (A ), v ). Lemma 1 enables us to embed L p(!n) into

L p(!). One can show that, for any p P [1, ` ], ø `
n 5 1L

p(!n) is dense in the

Banach space L p(!). From this it is easy to conclude that the spaces L p( p w (A ),
v ) and L p(!) are isomorphic as Banach spaces. Thus, we have the follow-

ing result:

Theorem. Let A be a UHF C*-algebra, w a faithful product state on !,

and (An) an approximating sequence of finite discrete subfactors of A. Let

L p(A, w ), p P [1, ` ], be the Banach space constructed at the beginning of

this section. Then L p(A, w ) and L p( p w (A )9) are isomorphic as Banach spaces.

In particular, the space L p(A, w ) does not depend on the choice of the

approximating sequence.

Full details and generalizations of this result will be published elsewhere.
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