*L ^p***-Spaces for UHF Algebras**

Stanisøaw Goldstein¹ and Viet Thu Phan¹

Received July 4, 1997

We construct L^p -spaces for a UHF algebra A with a faithful product state φ . We show that the spaces obtained are isomorphic, as Banach spaces, to the Haagerup spaces $L^p(\pi_\varphi(A)$ ").

INTRODUCTION

The recent progress in the theory of noncommutative Dirichlet forms (see, for example, Davies and Lindsay, 1992; Goldstein and Lindsay, 1995) shows that L^p -techniques can be applied fruitfully to the theory of quantum dynamical semigroups. The use of properly defined noncommutative *L p*spaces also gives a very natural setting for hypercontractivity questions. We present a simple attempt at a construction of noncommutative L^p -spaces for a class of *C**-algebras. We consider a very simple situation, namely that of a UHF algebra \vec{A} with a faithful product state φ . The reward is a very satisfactory result connecting the spaces with the Haagerup spaces for the von Neumann algebra generated by the image of *A* in the GNS representation with respect to the state φ . In many situations it will be possible to calculate the L^p -norms of A explicitly. The whole construction can be generalized easily, but the main ideas remain the same. We can find them, in a slightly different setting, in a recent paper of Majewski and Zegarlinski (1995). Consult Terp (1981) for the Haagerup theory and Trunov (1979) for the construction of L^p -spaces for semifinite algebras.

1. THE HAAGERUP SPACES

Let $\mathcal A$ be a von Neumann algebra acting in a Hilbert space *H* and ψ a faithful normal semifinite weight on $\mathcal A$. Denote by σ^{ψ} the modular auto-

¹ Faculty of Mathematics, Łódź University, 90-238 Łódź, Poland; e-mail: goldstei@ math.uni.lodz.pl.

morphism group $\{\sigma_t^{\psi}\}_{t \in \mathbb{R}}$ for the pair (\mathcal{A}, ψ) . The crossed product $\mathcal{A} =$ \mathcal{A} $\rtimes_{\sigma} \mathcal{A}$ R is the von Neumann algebra acting on $H = L^2(\mathbb{R}, H)$ generated by operators $\pi(a)$, $a \in \mathcal{A}$, and $\lambda(s)$, $s \in \mathbb{R}$, defined by

$$
(\pi(a)\xi)(t) = \sigma^{\psi}_{-t}(a)\xi(t) \quad \text{for} \quad \xi \in \overline{H}, \quad t \in \mathbb{R}
$$

$$
(\lambda(s)\xi)(t) = \xi(t-s) \quad \text{for} \quad \xi \in \overline{H}, \quad t \in \mathbb{R}
$$

Let *h* be a positive self-adjoint operator on *H* such that $\lambda(t) = h^{it}$ for $t \in$ R, and let $\overline{\psi}$ be the dual weight on $\overline{\mathcal{A}}$. Put $\overline{\tau}(\cdot) = \overline{\psi}(h^{-1} \cdot)$. Then $\overline{\tau}$ is a faithful (normal) semifinite trace on A . For any positive normal faithful functional φ on $\mathcal A$ denote by h_{φ} the faithful self-adjoint operator on *H* such that $\bar{\varphi}(\cdot)$ $=\overline{\tau}(h_{\varphi})$. The map $\varphi \mapsto h_{\varphi}$ can be extended to a linear bijection of \mathcal{A}_{*} onto a linear subspace of \overline{A} , where \overline{A} is the space of all measurable (with respect to $\overline{\tau}$) operators affiliated with \mathcal{A} . We denote this image of \mathcal{A}_* by $L^1(\mathcal{A})$, and
and our it with a norm $\|\cdot\|$, we hat $\|\cdot\|$, $\|\cdot\|$, $\|\cdot\|$ and $\sum_{k=1}^{\infty} L^k(\mathcal{A})$. endow it with a norm $\|\cdot\|_1$ such that $\|h_{\varphi}\|_1 = \|\varphi\|$. Now for $p \in [1, \infty[, L^p(\mathcal{A})]$ $= {k = u|k| : u \in \pi(\mathcal{A}), |k|^p \in L^1(\mathcal{A})}$ with $||k||_p = ||k|^p||_1^{1/p}$. For $p = \infty$, $L^{\infty}(\mathcal{A}) = \pi(\mathcal{A})$, with $\|\pi(a)\|_{\infty} = \|a\|$. It turns out that $L^{p}(\mathcal{A})$ endowed with the norms are Banach spaces sharing all the usual properties of classical L^p spaces such as the Hölder inequality, duality properties, etc.

Lemma 1. Let \Re be a von Neumann subalgebra of \Im . Assume that $\psi | \Re$ is semifinite and that $\sigma_t^{\psi| \mathcal{R}} = \sigma_t^{\psi} | \mathcal{R}$ for each $t \in \mathbb{R}$. Then \mathcal{R} can be canonically embedded into $\mathcal A$ and for each $p \in [1, \infty]$ the space $L^p(\mathcal B)$ can be canonically embedded into $L^p(\mathcal{A})$ so that for all $k \in L^p(\mathcal{B})$, $||k||_p^{\mathcal{B}} = ||k||_p^{\mathcal{A}}$.

Proof. Note that both $\overline{\mathcal{B}}$ and $\overline{\mathcal{A}}$ act on the same Hilbert space *H* and that $\pi_{\mathcal{R}} = \pi_{\mathcal{A}} | \mathcal{R}, \lambda_{\mathcal{R}} = \lambda_{\mathcal{A}}, h_{\mathcal{R}} = h_{\mathcal{A}}$ and $\overline{\tau}_{\mathcal{R}} = \overline{\tau}_{\mathcal{A}} | \overline{\mathcal{R}}$. It follows from the assumptions, by virtue of a theorem of Takesaki (1972), that there exists a norm-one projection E from $\mathcal A$ onto $\mathcal B$. It is not hard to check, using the definition of the dual weight, that for any $\varphi \in \mathcal{B}_*,$

$$
\overline{\varphi}=(\varphi\mathbin{{\scriptstyle\circ}} E)^{-}\vert\overline{\mathfrak{B}}
$$

Thus $h \phi_E^{\mathcal{A}} = h \phi_E^{\mathcal{B}}$, and $||h \phi_E^{\mathcal{B}}|| = ||\phi||_{\mathcal{B}} = ||\phi \circ E||_{\mathcal{A}} = ||h \phi_E^{\mathcal{A}}||$, which shows that for any $k \in L^1(\mathfrak{B}) \subset L^1(\mathfrak{A})$, $||k||_p^{\mathfrak{B}} = ||k||_p^{\mathfrak{A}}$. It is now obvious that, for each $p \in [1, \infty]$, $||k||_p^{\mathcal{B}} = ||k||_p^{\mathcal{A}}$ for $k \in L^p(\mathcal{B}) \subset L^p(\mathcal{A})$.

2. THE FINITE DISCRETE CASE

Let $\mathcal A$ be a finite discrete factor, and τ the faithful (normal) tracial state on A. For each $a \in \mathcal{A}$ and $p \in [1, \infty)$, put

$$
||a||_p^{\tau} = \tau(|a|^p)^{1/p}
$$

For $p = \infty$, put $||a||_{\infty}^{\tau} = ||a||$. It is easy to check that for each $p \in [1, \infty]$,

 $\|\cdot\|_p^{\tau}$ is a norm turning $\mathcal A$ into a Banach space which we denote by $L^p(\mathcal A, \tau)$. Moreover, the Hölder inequality

$$
||ab||_r^{\tau} \le ||a||_p^{\tau} ||b||_q^{\tau}
$$

holds for all *a*, $b \in \mathcal{A}$, with *p*, *q*, $r \in [1, \infty]$ such that $1/p + 1/q = 1/r$. Finally, for each $a \in \mathcal{A}$ and $p \in [1, \infty)$,

$$
||a||_p^{\tau} = \sup_{||b||_q^{\tau} \le 1} |\tau(ab)| \quad \text{where} \quad q \in [1, \infty] \text{ is such that } 1/p + 1/q = 1
$$

Let now φ be an arbitrary faithful (normal) state on $\mathcal A$. There exists a unique $h \in \mathcal{A}$ such that

$$
\varphi(a) = \tau(ha) \qquad \text{for all} \quad a \in \mathcal{A}
$$

Moreover, *h* is positive and invertible, and $\tau(h) = 1$.

For all $a \in \mathcal{A}$ and $p \in [1, \infty)$, put

$$
||a||_p = \tau (|h^{1/2p}ah^{1/2p}|^p)^{1/p}
$$

For $p = \infty$, let $||a||_{\infty} = ||a||$. We also define the bilinear form

$$
\langle a, b \rangle = \tau(h^{1/2}ah^{1/2}b) \quad \text{for all} \quad a, b \in \mathcal{A}
$$

Lemma 1. For all $p \in [1, \infty]$ we have that:

(i) $\|\cdot\|_p$ is a norm on $\mathcal A$

(ii) $|\langle a,b\rangle| \le ||a||_p||b||_q$, where $1/p + 1/q = 1$ and $a, b \in \mathcal{A}$.

(iii) $\|a\|_p = \sup_{\|b\|_q \leq 1} |\langle a, b \rangle|$ for all $a \in \mathcal{A}$, where $q \in [1, \infty]$ is such that $1/p + 1/q = 1$.

Proof. (i) Note that $||a||_p = ||h^{1/2p}ah^{1/2p}||_p^r$. If $||a||_p = 0$, then $h^{1/2p}ah^{1/2p} = 0$, so that $a = 0$. Hence $\|\cdot\|_p$ is a norm.

(ii) We have, for all $p \in [1, \infty]$ and $q \in [1, \infty]$ such that $1/p + 1/q = 1$,

$$
|\langle a, b \rangle| = |\tau(h^{1/2}ah^{1/2}b)|
$$

\n
$$
= |\tau(h^{1/2p}ah^{1/2p} \cdot h^{1/2q}bh^{1/2q})|
$$

\n
$$
\leq ||h^{1/2p}ah^{1/2p} \cdot h^{1/2q}bh^{1/2q}||_1^{\tau}
$$

\n
$$
\leq ||h^{1/2p}ah^{1/2p}||_p^{\tau}||h^{1/2q}bh^{1/2q}||_q^{\tau}
$$

\n
$$
= ||a||_p||b||_q
$$

(iii) Note that
$$
h^{1/2p} \triangleleft h^{1/2p} = \triangleleft
$$
 for each $p \in [1, \infty]$. Thus,

$$
||a||_p = ||h^{1/2p}ah^{1/2p}||_p^{\tau}
$$

=
$$
\sup_{||h^{1/2q}bh^{1/2q}||_p^{\tau} \le 1} |\tau(h^{1/2p}ah^{1/2p} \cdot h^{1/2q}bh^{1/2q})|
$$

=
$$
\sup_{||b||_q \le 1} |\langle a, b \rangle|
$$

Lemma 2. If $p, s \in [1, \infty]$ and $p \leq s$, then $||a||_p \leq ||a||_s$ for all $a \in \mathcal{A}$. *Proof.* By the Hölder inequality, if $p \leq s < \infty$, then

$$
||a||_p = ||h^{1/2p}ah^{1/2p}||_p^{\tau}
$$

= $||h^{1/2r}(h^{1/2s}ah^{1/2s})h^{1/2r}||_p^{\tau}$
 $\leq ||h^{1/2r}||_2^{\tau}, ||h^{1/2s}ah^{1/2s}||_s^{\tau} ||h^{1/2r}||_2^{\tau} = ||a||_s$

In the case $s = \infty$,

$$
||a||_p = \sup_{||b||_q \le 1} |\langle a, b \rangle| \le \sup_{||b||_1 \le 1} (||a|| \cdot ||b||_1) \le ||a||
$$

by the first part of the proof.

The norms $|| \cdot ||_p$ turn $\mathcal A$ into a Banach space which we denote by $L^p(\mathcal A, \mathcal A)$ φ). If $\varphi = \tau$ we are back to the old space $L^p(\mathcal{A}, \tau)$. In particular,

$$
||a||_p^{\tau} \le ||a||_s^{\tau} \quad \text{for} \quad p, s \in [1, \infty], \quad p \le s
$$

It is also true that if φ_1 , φ_2 are two faithful states on \mathcal{A} , then $L^p(\mathcal{A}, \varphi_1)$ and L^p (\mathcal{A}, φ_2) are isomorphic (that is, isometric) Banach spaces (since both are isomorphic to $L^p(\mathcal{A}, \tau)$).

Lemma 3. For each $p \in [1, \infty]$, the Banach space $L^p(\mathcal{A}, \varphi)$ is isomorphic to the Haagerup space $L^p(\mathcal{A})$.

Proof. We may assume that $\varphi = \tau$ and $p < \infty$. Note that, since the modular group $\{\sigma_t^{\tau}\}\)$ acts trivially on $\mathcal{A},$

$$
\overline{\mathcal{A}} := \mathcal{A} \rtimes_{\sigma^{\tau}} \mathbb{R} \simeq \mathcal{A} \otimes L^{\infty}(\mathbb{R})
$$

Furthermore, the canonical trace $\bar{\tau}$ on the crossed product $\bar{\mathcal{A}}$ equals $\tau \otimes e^{-s}$ *ds*. The Haagerup space $L^p(\mathcal{A})$ consists of products $a \otimes \exp((\cdot)/p)$, where $a \in \mathcal{A}$. Hence it is enough to show that the mapping

$$
a \mapsto a \otimes \exp((\cdot)/p)
$$

is an isometry. It is clear that one needs only to consider the case $p = 1$. We must show that

$$
\tau(|a|) = \overline{\tau}(\chi_{]1,\infty[}(|a| \otimes \exp(\cdot)))
$$

(see Terp (1981), Chapter II, Lemma 5). We calculate

$$
\overline{\tau}(\chi_{]1,\infty[}(|a|\otimes \exp(\cdot))) = \int_{-\infty}^{+\infty} \tau(\chi_{]e^{-s},\infty[}(|a|))e^{-s} ds
$$

$$
= \int_{0}^{\infty} \tau(\chi_{]s,\infty[}(|a|)) dt = \tau(|a|)
$$

which completes the proof.

3. THE UHF ALGEBRAS

Let *A* be an UHF *C**-algebra. We consider a fixed faithful product state φ on *A*. Thus, there exists a sequence (B_n) , $n = 1, 2, \ldots$ of mutually commuting finite discrete subfactors of *A* (each containing the unit of *A*) such that $\bigcup_{n=1}^{\infty} B_n$ generate *A* as a *C**-algebra, and that

$$
\varphi(b_1b_2\cdots b_n)=\varphi(b_1)\varphi(b_2)\cdots \varphi(b_n)
$$

for all $b_i \in B_i$, $j = 1, 2, ..., n$. Let A_n denote the finite discrete subfactor of *A* generated by $\bigcup_{j=1}^{n} B_j$, and put $A_{\infty} = \bigcup_{k=1}^{\infty} A_n$. For each *n* we denote by φ_n the restriction of φ to A_n and by $\|\cdot\|_p^{(n)}$ the norm of the Banach space $L^p(A_n, \varphi_n)$. It is easy to check that for $a \in A_n$, $||a||_p^{(n)} = ||a||_p^{(n+k)}$ for any positive integer *k*. Hence we can introduce functionals $\|\cdot\|_p$ on A_∞ , by putting

$$
||a||_p = ||a||_p^{(n)} \qquad \text{when} \quad a \in A_n
$$

Obviously, $\|\cdot\|_p$ turns A_∞ into a normed space. We denote by $L^p(A, \varphi)$ the completion of A_∞ with respect to the norm. If $a \in A_n$, there exists a sequence (a_n) of elements of A_∞ converging to *a* in the norm of *A*. Hence, (a_n) is Cauchy in the norm $\|\cdot\|_p$ for each $p \in [1, \infty]$. Denote its limit in $L^p(A, \varphi)$ by $\iota_p(a)$. The map $\iota_p: A \to L^p(A, \varphi)$ is an injection which extends the natural embedding of A_{∞} into this completion. Thus, for each $p \in [1, \infty]$, *A* can be treated as a subspace of $L^p(A, \varphi)$.

Note that up to now it has not been made clear whether or not the spaces $L^p(A, \varphi)$ depend (as Banach spaces) on the approximating sequence (A_n) .

Let $(H_{\omega} \pi_{\omega} \xi_{\omega})$ be the GNS representation of the pair (A, φ) . Let $\mathcal{A} =$ $\pi_{\varphi}(A)$ " and $\mathcal{A}_n = \pi_{\varphi}(A_n)$. Put $\omega := \omega_{\xi_{\varphi}}$ and $\omega_n := \omega_{\xi_{\varphi}}|\mathcal{A}_n$. We can treat ω as a state on $\mathcal A$. By Kadison and Ringrose (1986), Theorem 13.1.13, ω is faithful on $\mathcal A$ and the modular group $\{\sigma_t^{\omega}\}_{t \in \mathbb R}$ of $\mathcal A$ leaves each $\mathcal A_n$ invariant. There is also a natural isometric isomorphism between the Banach spaces $L^p(A_n, \varphi_n)$ and $L^p(\pi_{\varphi}(A), \omega)$. Lemma 1 enables us to embed $L^p(\mathcal{A}_n)$ into $L^p(\mathcal{A})$. One can show that, for any $p \in [1, \infty]$, $\bigcup_{n=1}^{\infty} L^p(\mathcal{A}_n)$ is dense in the Banach space $L^p(\mathcal{A})$. From this it is easy to conclude that the spaces $L^p(\pi_\varphi(A))$, ω) and $L^p(\mathcal{A})$ are isomorphic as Banach spaces. Thus, we have the following result:

Theorem. Let *A* be a UHF C^* -algebra, φ a faithful product state on \mathcal{A} , and (A_n) an approximating sequence of finite discrete subfactors of *A*. Let $L^p(A, \varphi), p \in [1, \infty]$, be the Banach space constructed at the beginning of this section. Then $L^p(A, \varphi)$ and $L^p(\pi_\varphi(A)')$ are isomorphic as Banach spaces. In particular, the space $L^p(A, \varphi)$ does not depend on the choice of the approximating sequence.

Full details and generalizations of this result will be published elsewhere.

ACKNOWLEDGMENTS

This work was supported by KBN grant No. 2 P03A 04410.

REFERENCES

- Davies, E. B., and Lindsay, J. M. (1992). Non-commutative symmetric Markov semigroups, *Mathematische Zeitschrift*, 210, 379-411.
- Goldstein, S., and Lindsay, J. M. (1995). KMS-symmetric Markov semigroups, *Mathematische Zeitschrift*, 219, 591-608.
- Kadison, R. V., and Ringrose, J. R. (1986). *Fundamentals of the Theory of Operator Algebras II*, Academic Press, New York.
- Majewski, A. W., and Zegarlinski, B. (1995). Quantum Stochastic Dynamics I: Spin systems on a lattice, *Math. Phys. Electronic Journal,* **1** paper no. 2.
- Takesaki, M. (1972). Conditional expectation in von Neumann algebra, *Journal of Functional Analysis*, 9, 306-321.
- Terp, M. (1981). L^p -spaces associated with von Neumann algebras, Københavns Universitet, Mathematisk Institut, Rapport No. 3.
- Trunov N. V. (1979). Non-commutati ve analogue of an *L ^p* -space, *Izvestiga VUZ Matematika,* **11**, 69-77 [in Russian].