L^{p} -Spaces for UHF Algebras

Stanisław Goldstein¹ and Viet Thu Phan¹

Received July 4, 1997

We construct L^p -spaces for a UHF algebra A with a faithful product state φ . We show that the spaces obtained are isomorphic, as Banach spaces, to the Haagerup spaces $L^p(\pi_{\varphi}(A)'')$.

INTRODUCTION

The recent progress in the theory of noncommutative Dirichlet forms (see, for example, Davies and Lindsay, 1992; Goldstein and Lindsay, 1995) shows that L^{p} -techniques can be applied fruitfully to the theory of quantum dynamical semigroups. The use of properly defined noncommutative L^{p} spaces also gives a very natural setting for hypercontractivity questions. We present a simple attempt at a construction of noncommutative L^p -spaces for a class of C^* -algebras. We consider a very simple situation, namely that of a UHF algebra A with a faithful product state φ . The reward is a very satisfactory result connecting the spaces with the Haagerup spaces for the von Neumann algebra generated by the image of A in the GNS representation with respect to the state φ . In many situations it will be possible to calculate the L^p -norms of A explicitly. The whole construction can be generalized easily, but the main ideas remain the same. We can find them, in a slightly different setting, in a recent paper of Majewski and Zegarlinski (1995). Consult Terp (1981) for the Haagerup theory and Trunov (1979) for the construction of L^p -spaces for semifinite algebras.

1. THE HAAGERUP SPACES

Let \mathcal{A} be a von Neumann algebra acting in a Hilbert space H and ψ a faithful normal semifinite weight on \mathcal{A} . Denote by σ^{ψ} the modular auto-

¹Faculty of Mathematics, Łódź University, 90–238 Łódź, Poland; e-mail: goldstei@ math.uni.lodz.pl.

morphism group $\{\sigma_t^{\psi}\}_{t\in\mathbb{R}}$ for the pair (\mathcal{A}, ψ) . The crossed product $\mathcal{A} = \mathcal{A} \rtimes_{\sigma^{\psi}} \mathbb{R}$ is the von Neumann algebra acting on $H = L^2(\mathbb{R}, H)$ generated by operators $\pi(a), a \in \mathcal{A}$, and $\lambda(s), s \in \mathbb{R}$, defined by

$$(\pi(a)\xi)(t) = \sigma_{-t}^{\Psi}(a)\xi(t) \quad \text{for} \quad \xi \in \mathbf{H}, \quad t \in \mathbb{R}$$
$$(\lambda(s)\xi)(t) = \xi(t-s) \quad \text{for} \quad \xi \in \overline{\mathbf{H}}, \quad t \in \mathbb{R}$$

Let *h* be a positive self-adjoint operator on \overline{H} such that $\lambda(t) = h^{it}$ for $t \in \mathbb{R}$, and let ψ be the dual weight on \mathcal{A} . Put $\overline{\tau}(\cdot) = \psi(h^{-1} \cdot)$. Then $\overline{\tau}$ is a faithful (normal) semifinite trace on \mathcal{A} . For any positive normal faithful functional φ on \mathcal{A} denote by h_{φ} the faithful self-adjoint operator on \overline{H} such that $\overline{\rho}(\cdot) = \overline{\tau}(h_{\varphi} \cdot)$. The map $\varphi \mapsto h_{\varphi}$ can be extended to a linear bijection of \mathcal{A}_* onto a linear subspace of $\overline{\mathcal{A}}$, where $\overline{\mathcal{A}}$ is the space of all measurable (with respect to $\overline{\tau}$) operators affiliated with \mathcal{A} . We denote this image of \mathcal{A}_* by $L^1(\mathcal{A})$, and endow it with a norm $\|\cdot\|_1$ such that $\|h_{\varphi}\|_1 = \|\varphi\|$. Now for $p \in [1, \infty[, L^p(\mathcal{A})] = \{k = u|k|: u \in \pi(\mathcal{A}), |k|^p \in L^1(\mathcal{A})\}$ with $\|k\|_p = \||k|^p\|_1^{1/p}$. For $p = \infty$, $L^{\infty}(\mathcal{A}) = \pi(\mathcal{A})$, with $\|\pi(a)\|_{\infty} = \|a\|$. It turns out that $L^p(\mathcal{A})$ endowed with the norms are Banach spaces sharing all the usual properties of classical L^p spaces such as the Hölder inequality, duality properties, etc.

Lemma 1. Let \mathfrak{B} be a von Neumann subalgebra of $\underline{\mathscr{A}}$. Assume that $\psi|\mathfrak{B}$ is semifinite and that $\sigma_t^{\psi|\mathfrak{B}} = \sigma_t^{\psi}|\mathfrak{B}$ for each $t \in \mathbb{R}$. Then \mathfrak{B} can be canonically embedded into \mathfrak{A} and for each $p \in [1, \infty]$ the space $L^p(\mathfrak{B})$ can be canonically embedded into $L^p(\mathfrak{A})$ so that for all $k \in L^p(\mathfrak{B})$, $||k||_p^{\mathfrak{B}} = ||k||_p^{\mathfrak{A}}$.

Proof. Note that both $\overline{\mathcal{B}}$ and $\overline{\mathcal{A}}$ act on the same Hilbert space \overline{H} and that $\pi_{\mathfrak{B}} = \pi_{\mathcal{A}} | \mathfrak{B}, \lambda_{\mathfrak{B}} = \lambda_{\mathcal{A}}, h_{\mathfrak{B}} = h_{\mathcal{A}}$ and $\overline{\tau}_{\mathfrak{B}} = \overline{\tau}_{\mathcal{A}} | \mathfrak{B}$. It follows from the assumptions, by virtue of a theorem of Takesaki (1972), that there exists a norm-one projection E from \mathcal{A} onto \mathfrak{B} . It is not hard to check, using the definition of the dual weight, that for any $\varphi \in \mathfrak{B}_*$,

$$\overline{\mathbf{\varphi}} = (\mathbf{\varphi} \circ E)^{-} |\overline{\mathcal{B}}|$$

Thus $h_{\phi E}^{\mathcal{A}} = h_{\phi}^{\mathfrak{B}}$, and $\|h_{\phi}^{\mathfrak{B}}\| = \|\phi\|_{\mathfrak{B}} = \|\phi \circ E\|_{\mathfrak{A}} = \|h_{\phi E}^{\mathfrak{A}}\|$, which shows that for any $k \in L^{1}(\mathfrak{B}) \subset L^{1}(\mathfrak{A}), \|k\|_{p}^{\mathfrak{B}} = \|k\|_{p}^{\mathfrak{A}}$. It is now obvious that, for each $p \in [1, \infty], \|k\|_{p}^{\mathfrak{B}} = \|k\|_{p}^{\mathfrak{A}}$ for $k \in L^{p}(\mathfrak{B}) \subset L^{p}(\mathfrak{A})$.

2. THE FINITE DISCRETE CASE

Let \mathcal{A} be a finite discrete factor, and τ the faithful (normal) tracial state on \mathcal{A} . For each $a \in \mathcal{A}$ and $p \in [1, \infty[$, put

$$||a||_p^{\tau} = \tau (|a|^p)^{1/p}$$

For $p = \infty$, put $||a||_{\infty}^{\tau} = ||a||$. It is easy to check that for each $p \in [1, \infty]$,

 $\|\cdot\|_p^{\tau}$ is a norm turning \mathcal{A} into a Banach space which we denote by $L^p(\mathcal{A}, \tau)$. Moreover, the Hölder inequality

$$||ab||_r^{\tau} \le ||a||_p^{\tau} ||b||_q^{\tau}$$

holds for all $a, b \in \mathcal{A}$, with $p, q, r \in [1, \infty]$ such that 1/p + 1/q = 1/r. Finally, for each $a \in \mathcal{A}$ and $p \in [1, \infty]$,

$$\|a\|_p^{\tau} = \sup_{\|b\|_q^{\tau} \le 1} |\tau(ab)| \quad \text{where} \quad q \in [1, \infty] \text{ is such that } 1/p + 1/q = 1$$

Let now φ be an arbitrary faithful (normal) state on \mathcal{A} . There exists a unique $h \in \mathcal{A}$ such that

$$\varphi(a) = \tau(ha)$$
 for all $a \in \mathcal{A}$

Moreover, h is positive and invertible, and $\tau(h) = 1$.

For all $a \in \mathcal{A}$ and $p \in [1, \infty[$, put

$$||a||_p = \tau (|h|^{1/2p} ah^{1/2p}|^p)^{1/p}$$

For $p = \infty$, let $||a||_{\infty} = ||a||$. We also define the bilinear form $\langle a. b \rangle = \tau(h^{1/2}ah^{1/2}b)$ for all $a, b \in \mathcal{A}$

Lemma 1. For all $p \in [1, \infty]$ we have that:

(i) $\|\cdot\|_p$ is a norm on \mathcal{A}

(ii) $|\langle a,b\rangle| \le ||a||_p ||b||_q$, where 1/p + 1/q = 1 and $a, b \in \mathcal{A}$.

(iii) $||a||_p = \sup_{\|b\|_q \le 1} |\langle a, b \rangle|$ for all $a \in \mathcal{A}$, where $q \in [1, \infty]$ is such that 1/p + 1/q = 1.

Proof. (i) Note that $||a||_p = ||h|^{1/2p} a h^{1/2p}||_p^r$. If $||a||_p = 0$, then $h^{1/2p} a h^{1/2p} = 0$, so that a = 0. Hence $||\cdot||_p$ is a norm.

. 1/2

(ii) We have, for all $p \in [1, \infty]$ and $q \in [1, \infty]$ such that 1/p + 1/q = 1,

$$\begin{aligned} |\langle a, b \rangle| &= |\tau(h^{1/2}ah^{1/2}b)| \\ &= |\tau(h^{1/2p}ah^{1/2p} \cdot h^{1/2q}bh^{1/2q})| \\ &\leq \|h^{1/2p}ah^{1/2p} \cdot h^{1/2q}bh^{1/2q}\|_{1}^{\tau} \\ &\leq \|h^{1/2p}ah^{1/2p}\|_{p}^{\tau}\|h^{1/2q}bh^{1/2q}\|_{q}^{\tau} \\ &= \|a\|_{p}\|b\|_{q} \end{aligned}$$

(iii) Note that
$$h^{1/2p} \mathcal{A} h^{1/2p} = \mathcal{A}$$
 for each $p \in [1, \infty]$. Thus,

$$\|a\|_{p} = \|h^{1/2p}ah^{1/2p}\|_{p}^{\tau}$$

=
$$\sup_{\|h^{1/2q}bh^{1/2q}\|_{p}^{\tau} \le 1} |\tau(h^{1/2p}ah^{1/2p} \cdot h^{1/2q}bh^{1/2q})|$$

=
$$\sup_{\|b\|_{q} \le 1} |\langle a, b \rangle|$$

Lemma 2. If $p, s \in [1, \infty]$ and $p \le s$, then $||a||_p \le ||a||_s$ for all $a \in \mathcal{A}$. *Proof.* By the Hölder inequality, if $p \le s < \infty$, then

$$\begin{aligned} \|a\|_{p} &= \|h^{1/2p}ah^{1/2p}\|_{p}^{\tau} \\ &= \|h^{1/2r}(h^{1/2s}ah^{1/2s})h^{1/2r}\|_{p}^{\tau} \\ &\leq \|h^{1/2r}\|_{r}^{\tau} \|h^{1/2s}ah^{1/2s}\|_{s}^{\tau} \|h^{1/2r}\|_{2r}^{\tau} = \|a\|_{s} \end{aligned}$$

In the case $s = \infty$,

$$||a||_{p} = \sup_{\|b\|_{q} \le 1} |\langle a, b \rangle| \le \sup_{\|b\|_{1} \le 1} (||a|| \cdot ||b||_{1}) \le ||a||$$

by the first part of the proof.

The norms $\|\cdot\|_p$ turn \mathcal{A} into a Banach space which we denote by $L^p(\mathcal{A}, \varphi)$. If $\varphi = \tau$ we are back to the old space $L^p(\mathcal{A}, \tau)$. In particular,

$$||a||_p^{\tau} \le ||a||_s^{\tau} \quad \text{for} \quad p, s \in [1, \infty], \quad p \le s$$

It is also true that if φ_1 , φ_2 are two faithful states on \mathcal{A} , then $L^p(\mathcal{A}, \varphi_1)$ and $L^p(\mathcal{A}, \varphi_2)$ are isomorphic (that is, isometric) Banach spaces (since both are isomorphic to $L^p(\mathcal{A}, \tau)$).

Lemma 3. For each $p \in [1, \infty]$, the Banach space $L^p(\mathcal{A}, \varphi)$ is isomorphic to the Haagerup space $L^p(\mathcal{A})$.

Proof. We may assume that $\varphi = \tau$ and $p < \infty$. Note that, since the modular group $\{\sigma_t^{\tau}\}$ acts trivially on \mathcal{A} ,

$$\mathscr{A} := \mathscr{A} \rtimes_{\sigma^{\mathsf{T}}} \mathbb{R} \simeq \mathscr{A} \otimes L^{\infty}(\mathbb{R})$$

Furthermore, the canonical trace $\overline{\tau}$ on the crossed product $\overline{\mathcal{A}}$ equals $\tau \otimes e^{-s}$ ds. The Haagerup space $L^p(\mathcal{A})$ consists of products $a \otimes \exp((\cdot)/p)$, where $a \in \mathcal{A}$. Hence it is enough to show that the mapping

$$a \mapsto a \otimes \exp((\cdot)/p)$$

is an isometry. It is clear that one needs only to consider the case p = 1. We must show that

$$\tau(|a|) = \overline{\tau}(\chi_{]1,\infty[}(|a| \otimes \exp(\cdot)))$$

(see Terp (1981), Chapter II, Lemma 5). We calculate

$$\overline{\tau}(\chi_{]1,\infty[}(|a|\otimes \exp(\cdot))) = \int_{-\infty}^{+\infty} \tau(\chi_{]e^{-s},\infty[}(|a|))e^{-s} ds$$
$$= \int_{0}^{\infty} \tau(\chi_{]s,\infty[}(|a|)) dt = \tau(|a|)$$

which completes the proof.

3. THE UHF ALGEBRAS

Let *A* be an UHF *C**-algebra. We consider a fixed faithful product state φ on *A*. Thus, there exists a sequence (B_n) , $n = 1, 2, \ldots$, of mutually commuting finite discrete subfactors of *A* (each containing the unit of *A*) such that $\bigcup_{n=1}^{\infty} B_n$ generate *A* as a *C**-algebra, and that

$$\varphi(b_1b_2\cdots b_n)=\varphi(b_1)\varphi(b_2)\cdots\varphi(b_n)$$

for all $b_j \in B_j$, j = 1, 2, ..., n. Let A_n denote the finite discrete subfactor of A generated by $\bigcup_{j=1}^n B_j$, and put $A_\infty = \bigcup_{k=1}^\infty A_n$. For each n we denote by φ_n the restriction of φ to A_n and by $\|\cdot\|_p^{(n)}$ the norm of the Banach space $L^p(A_n, \varphi_n)$. It is easy to check that for $a \in A_n$, $\|a\|_p^{(n)} = \|a\|_p^{(n+k)}$ for any positive integer k. Hence we can introduce functionals $\|\cdot\|_p$ on A_∞ , by putting

$$||a||_p = ||a||_p^{(n)}$$
 when $a \in A_n$

Obviously, $\|\cdot\|_p$ turns A_{∞} into a normed space. We denote by $L^p(A, \varphi)$ the completion of A_{∞} with respect to the norm. If $a \in A_n$, there exists a sequence (a_n) of elements of A_{∞} converging to a in the norm of A. Hence, (a_n) is Cauchy in the norm $\|\cdot\|_p$ for each $p \in [1, \infty]$. Denote its limit in $L^p(A, \varphi)$ by $\iota_p(a)$. The map $\iota_p: A \to L^p(A, \varphi)$ is an injection which extends the natural embedding of A_{∞} into this completion. Thus, for each $p \in [1, \infty]$, A can be treated as a subspace of $L^p(A, \varphi)$.

Note that up to now it has not been made clear whether or not the spaces $L^{p}(A, \varphi)$ depend (as Banach spaces) on the approximating sequence (A_{n}) .

Let $(H_{\varphi}, \pi_{\varphi}, \xi_{\varphi})$ be the GNS representation of the pair (A, φ) . Let $\mathcal{A} = \pi_{\varphi}(A)^n$ and $\mathcal{A}_n = \pi_{\varphi}(A_n)$. Put $\omega := \omega_{\xi\varphi}$ and $\omega_n := \omega_{\xi\varphi}|\mathcal{A}_n$. We can treat ω as a state on \mathcal{A} . By Kadison and Ringrose (1986), Theorem 13.1.13, ω is faithful on \mathcal{A} and the modular group $\{\sigma_t^{\omega}\}_{t\in\mathbb{R}}$ of \mathcal{A} leaves each \mathcal{A}_n invariant. There is also a natural isometric isomorphism between the Banach spaces $L^p(\mathcal{A}_n, \varphi_n)$ and $L^p(\pi_{\varphi}(\mathcal{A}), \omega)$. Lemma 1 enables us to embed $L^p(\mathcal{A}_n)$ into $L^p(\mathcal{A})$. One can show that, for any $p \in [1, \infty], \bigcup_{n=1}^{\infty} L^p(\mathcal{A}_n)$ is dense in the Banach space $L^p(\mathcal{A})$. From this it is easy to conclude that the spaces $L^p(\pi_{\varphi}(\mathcal{A}), \omega)$ and $L^p(\mathcal{A})$ are isomorphic as Banach spaces. Thus, we have the following result:

Theorem. Let A be a UHF C*-algebra, φ a faithful product state on \mathcal{A} , and (A_n) an approximating sequence of finite discrete subfactors of A. Let $L^p(A, \varphi), p \in [1, \infty]$, be the Banach space constructed at the beginning of this section. Then $L^p(A, \varphi)$ and $L^p(\pi_{\varphi}(A)'')$ are isomorphic as Banach spaces. In particular, the space $L^p(A, \varphi)$ does not depend on the choice of the approximating sequence.

Full details and generalizations of this result will be published elsewhere.

ACKNOWLEDGMENTS

This work was supported by KBN grant No. 2 P03A 04410.

REFERENCES

- Davies, E. B., and Lindsay, J. M. (1992). Non-commutative symmetric Markov semigroups, Mathematische Zeitschrift, 210, 379–411.
- Goldstein, S., and Lindsay, J. M. (1995). KMS-symmetric Markov semigroups, *Mathematische Zeitschrift*, 219, 591–608.
- Kadison, R. V., and Ringrose, J. R. (1986). Fundamentals of the Theory of Operator Algebras II, Academic Press, New York.
- Majewski, A. W., and Zegarlinski, B. (1995). Quantum Stochastic Dynamics I: Spin systems on a lattice, *Math. Phys. Electronic Journal*, **1** paper no. 2.
- Takesaki, M. (1972). Conditional expectation in von Neumann algebra, Journal of Functional Analysis, 9, 306–321.
- Terp, M. (1981). L^p -spaces associated with von Neumann algebras, Københavns Universitet, Mathematisk Institut, Rapport No. 3.
- Trunov N. V. (1979). Non-commutative analogue of an L^p -space, *Izvestiga VUZ Matematika*, **11**, 69–77 [in Russian].